Supplement

Title:	712 Inst.Sht. Supplement Issue:	$\mathbf{1}$	
Part Number:	650280	Issue Date:	$2 / 05$
Print Date:	August 1997	Page Count:	5
Revision/Date:	$2,5 / 04$		

This supplement contains information necessary to ensure the accuracy of the document described above.

Change \#1

Under Getting Acquainted with the Calibrator, replace the figure with the following:

Under Display Elements, add the following to the table:

© Span Check Step and Ramp	Lit when in Span Check, step and ramp modes

Prior to Simulating an RTD, add the following sections:

Auto Shut-Off (Power Saver)

The Calibrator automatically turns off after 30 minutes of inactivity. To reduce the time or disable this feature:

1. With the Calibrator OFF, press (0.P.S.xx is displayed, where $x x$ is the turn-off time in minutes. OFF means the power saver is disabled.
2. Press Δ and/or \square to increase or decrease the turn off time in minutes.
3. To disable, press \square until the display shows OFF.

Span Check

The calibrator allows you to store 0\% and 100\% setpoints for each output type. Once setpoints are stored, the span check feature allows you to quickly toggle back and forth from 0% to 100% or to step in 25% increments.
Automatic step and ramp modes can be enabled while in span check mode by simultaneously pressing Δ or \square. First select the desired output range, then proceed to store the setpoints:

1. Use \square and \square to set the output to the desired value for 0%.
2. Press \triangle and \square simultaneously to store the 0% value.
3. Use \square and \square to set the output to the desired value for 100%.
4. Press Δ and simultaneously to store the 100% value.

Under Testing and Replacing the Fuses, delete the entire section and the corresponding figure.

Under Replacement Parts and Accessories, delete the F1, F2 row and under MP86 change the part number, From: 620168
To: 2397526
Remove the F1 and F2 fuses from the replacement parts illustration.

Under Specifications, replace the Ohms
Specifications table with the following two tables:

Ohms Measurement Specifications

Ohms Range	Accuracy *	
	4-Wire	2- and 3-wire
0 to 400Ω	$0.025 \% \pm 0.05 \Omega$	$0.025 \% \pm 0.1 \Omega$
400 to 4000Ω	$0.025 \% \pm 0.05 \Omega$	$0.025 \% \pm 0.55 \Omega$
Excitation current : 0.2 mA		
Maxiumum input voltage: 30 V		
*2-wire: Does not include lead resistance		
3-wire: Assumes matched leads		

Ohms Source Specifications

Ohms Range	Excitation Current from Measurement Device	Accuracy
5 to 400Ω	0.1 to 0.5 mA	$0.025 \% \pm 0.1 \Omega$
5 to 400Ω	0.5 to 3.0 mA	$0.025 \% \pm 0.05 \Omega$
400 to 1500Ω	0.05 to 0.8 mA	$0.025 \% \pm 0.5 \Omega$
1500 to 4000Ω	0.05 to 0.4 mA	$0.025 \% \pm 0.5 \Omega$

Under RTD Specification, replace the table with the following:

$\begin{aligned} & \text { RTD } \\ & \text { Type } \end{aligned}$	Range ${ }^{\circ} \mathrm{C}$	Accuracy ${ }^{\circ} \mathrm{C}$ *			Allowable Excitation mA
		Measure		Source	
		4-wire	$\left\lvert\, \begin{array}{\|l\|} \hline \text { 2- and } \\ \text { 3-wire } \end{array}\right.$		
Ni120	$\begin{aligned} & -80.0 \text { to } \\ & 260.0 \end{aligned}$	0.20	0.25	0.2	0.1 to 3.0
$\begin{aligned} & \text { Pt100 } \\ & 385 \end{aligned}$	$\begin{aligned} & -200.0 \text { to } \\ & 100.0 \end{aligned}$	0.20	0.28	0.2	0.1 to 3.0
	$\begin{aligned} & 100.0 \text { to } \\ & 300.0 \end{aligned}$	0.30	0.40	0.3	

712 Instruction Sheet

	$\begin{aligned} & 300.0 \text { to } \\ & 600.0 \end{aligned}$	0.40	0.52	0.4	
	$\begin{aligned} & 600.0 \text { to } \\ & 8000 \end{aligned}$	0.50	0.65	0.5	
$\begin{aligned} & \text { Pt200 } \\ & 385 \end{aligned}$	$\begin{aligned} & -200.0 \text { to } \\ & 1000 \end{aligned}$	0.80	1.00	0.8	0.05 to 0.8
	$\begin{aligned} & 100.0 \text { to } \\ & 300.0 \end{aligned}$	0.90	1.15	0.9	
	$\begin{aligned} & 300.0 \text { to } \\ & 630.0 \end{aligned}$	1.00	1.20	1.0	
$\begin{aligned} & \text { Pt500 } \\ & 385 \end{aligned}$	$\begin{aligned} & -200.0 \text { to } \\ & 100.0 \end{aligned}$	0.40	0.60	0.4	0.05 to 0.8
	$\begin{aligned} & 100.0 \text { to } \\ & 300.0 \end{aligned}$	0.50	0.75	0.5	
	$\begin{aligned} & 300.0 \text { to } \\ & 630.0 \end{aligned}$	0.60	0.90	0.6	
$\begin{aligned} & \text { Pt1000 } \\ & 385 \end{aligned}$	$\begin{aligned} & -200.0 \text { to } \\ & 100.0 \end{aligned}$	0.20	0.25	0.2	0.05 to 0.4
	$\begin{aligned} & 100.0 \text { to } \\ & 300.0 \end{aligned}$	0.30	0.40	0.3	
	$\begin{aligned} & 300.0 \text { to } \\ & 630.0 \end{aligned}$	0.40	0.52	0.4	
$\begin{aligned} & \text { Pt100 } \\ & 3926 \end{aligned}$	$\begin{aligned} & -200.0 \text { to } \\ & 100.0 \end{aligned}$	0.20	0.28	0.2	0.1 to 3.0
	$\begin{aligned} & 100.0 \text { to } \\ & 300.0 \end{aligned}$	0.30	0.40	0.3	
	$\begin{aligned} & 300.0 \text { to } \\ & 630.0 \end{aligned}$	0.40	0.52	0.4	

Pt100 3916	-200.0 to 100.0	0.20	0.28	0.2	0.1 to 3.0		
	100.0 to 300.0	0.30	0.40	0.3			
	300.0 to 630.0	0.40	0.52	0.4			Addresses pulsed transmitters and PLC's with pulses as short as
:---							
5ms.							
Excitation current from 712: 0.2mA							
Maximum input voltage: 30V							
*2-wire: Does not include lead resistance							
3-wire: Assumes matched leads							

Under General Specifications, change the ohms ranges in the Temperature coefficient:

From: Ohms ranges are $400 \Omega, 1.5 \mathrm{k} \Omega$, and $3.2 \mathrm{k} \Omega$
To: Ohms ranges are $400 \Omega, 1.5 \mathrm{k} \Omega$, and $4.0 \mathrm{k} \Omega$

